翻訳と辞書
Words near each other
・ KERNAL
・ Kernal Roberts
・ Kernan
・ Kernan "Skip" Hand
・ Kernan Corner, New Jersey
・ Kernascléden
・ Kernavė
・ Kerne Bridge
・ Kerne Bridge railway station
・ Kernel
・ Kernel (algebra)
・ Kernel (category theory)
・ Kernel (digital media company)
・ Kernel (EP)
・ Kernel (image processing)
Kernel (linear algebra)
・ Kernel (operating system)
・ Kernel (set theory)
・ Kernel (statistics)
・ Kernel adaptive filter
・ Kernel debugger
・ Kernel density estimation
・ Kernel eigenvoice
・ Kernel embedding of distributions
・ Kernel Fisher discriminant analysis
・ Kernel function for solving integral equation of surface radiation exchanges
・ Kernel Independent Transport Layer
・ Kernel marker
・ Kernel method
・ Kernel methods for vector output


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Kernel (linear algebra) : ウィキペディア英語版
Kernel (linear algebra)

In linear algebra and functional analysis, the kernel (also null space or nullspace) of a linear map between two vector spaces ''V'' and ''W'', is the set of all elements v of ''V'' for which , where 0 denotes the zero vector in ''W''. That is, in set-builder notation,
:\ker(L) = \left\)=\mathbf \right\}\text
==Properties of the Kernel==

The kernel of ''L'' is a linear subspace of the domain ''V''.〔Linear algebra, as discussed in this article, is a very well established mathematical discipline for which there are many sources. Almost all of the material in this article can be found in Lay 2005, Meyer 2001, and Strang 2005.〕
In the linear map , two elements of ''V'' have the same image in ''W'' if and only if their difference lies in the kernel of ''L'':
:L(\mathbf_1) = L(\mathbf_2)\;\;\;\;\Leftrightarrow\;\;\;\;L(\mathbf_1-\mathbf_2)=\mathbf\text
It follows that the image of ''L'' is isomorphic to the quotient of ''V'' by the kernel:
:\mathop
This implies the rank–nullity theorem:
:\dim(\ker L) + \dim(\mathop\,
where, by “rank” we mean the dimension of the image of ''L'', and by “nullity” that of the kernel of ''L''.
When ''V'' is an inner product space, the quotient can be identified with the orthogonal complement in ''V'' of ker(''L''). This is the generalization to linear operators of the row space, or coimage, of a matrix.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Kernel (linear algebra)」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.